7 votos

¿Cuáles son las implicaciones de una tasa negativa libre de riesgo en el LME?

¿Qué pasa con la línea del mercado de seguridad (dentro del modelo CAPM) cuando la tasa libre de riesgo se vuelve negativa?

1 votos

Primer comentario: ¿Son los tipos negativos realmente coherentes con los supuestos en los que se basa el CAPM? Por ejemplo, ¿por qué alguien invertiría sin riesgo en lugar de consumir la riqueza inmediatamente?

1 votos

Segundo comentario: ¿Sigue teniendo sentido el CAPM como modelo si los tipos libres de riesgo son negativos? Uno podría tener dinero en efectivo en billetes físicos en una cámara acorazada que ganara cero, lo que significa que los tipos libres de riesgo negativos crean oportunidades de arbitraje. Por lo tanto, el hecho de que los tipos libres de riesgo sean negativos sólo puede explicarse con características que no figuran en el modelo CAPM, como el coste de las cajas fuertes o el hecho de que no exista un activo libre de riesgo.

0 votos

Sí a los comentarios anteriores. Los europeos, suizos y japoneses aún no han consumido su riqueza, a pesar de los repetidos esfuerzos del BCE, el SNB y el BOJ por incentivar precisamente eso. Aparcando el arbo de la bóveda bancaria como impracticable, la gente TIENE que invertir sin riesgo. El efectivo existe, que coexiste como reservas bancarias en el banco central. Estas pueden moverse dentro del sistema, pero no pueden entrar ni salir de él. Alguien lo posee al final de cada día. El hecho de que sea un -0,1% frente a un +0,1% o un +3,5% es incidental.

5voto

guest Puntos 11

La tasa libre de riesgo es la intersección y de la línea del mercado de seguridad. Si el tipo libre de riesgo es negativo, la intersección en Y de la línea del mercado de valores se situaría simplemente por debajo del eje X. Por lo tanto, si la tasa libre de riesgo disminuye, toda la línea se desplaza hacia abajo. Esto significa que la gente está dispuesta a pagar por la seguridad. Según la fórmula de la LMS

  • E(Ri) : rendimiento esperado de un valor
  • E(Rm) : rendimiento esperado del mercado
  • B : riesgo sistemático
  • Rm : riesgo de mercado
  • Rf : tasa libre de riesgo

E(Ri) = Rf + B(E(Rm) - Rf)

2voto

Kevindra Puntos 118

Cuando se habla del CAPM se asumen muchas cosas sobre el mercado y el comportamiento de los inversores. Hay suficiente literatura sobre "el CAPM no se sostiene". De hecho, la mayoría de los valores de baja beta se sitúan por encima de la línea del mercado de valores (LMS). Así que sería un error tomarse el CAPM tan en serio en la práctica y cruzaría la pregunta de si el CAPM funciona tal cual.

En teoría, si hay tipos de interés negativos, entonces, según la ecuación del CAPM, se tendría un intercepto negativo. Además, la prima de mercado aumentaría en la misma medida que el tipo libre de riesgo. Pero esto es pura matemática y habría que preguntarse si hay valor en mantener un activo sin riesgo.

En la práctica, es erróneo suponer que el CAPM se mantiene incluso cuando la tasa libre de riesgo es positiva. Empíricamente, la LMS presenta una pendiente negativa, es decir, las acciones de baja beta (valor) tienen una mayor rentabilidad esperada que las de alta beta (crecimiento). Un argumento a favor de esto es que si los inversores creen ciegamente en el CAPM, entonces sobrevaloran las acciones de alta beta (todos asumen que alta beta = alta rentabilidad), agotando la "rentabilidad esperada" y subvalorando las acciones de baja beta aumentando la "rentabilidad esperada".

Este papel es una buena referencia para leer sobre la anomalía beta baja.

2voto

Andrey Puntos 137

Me gustaría señalar una consecuencia de la tasa libre de riesgo negativa:

Cuando la tasa libre de riesgo se vuelve más negativa, el Cartera de mercado (rojo) converge a la Cartera global de varianza mínima (azul).

Sin embargo, la Cartera de Mercado nunca es igual a la Cartera GMV, ya que la pendiente es infinita.

enter image description here

0voto

Arihant Puntos 66

Consecuencias de los rendimientos negativos en el tramo corto de la curva de rendimientos de los valores del Tesoro de EE.UU. en la fijación de precios de los activos de riesgo utilizando el CAPM:

  • Los rendimientos requeridos en el SML sólo se mueven hacia abajo en todas las opciones de volatilidad de la inversión. La LMS se cruza ahora con los ejes Y y X.

  • Adaptación de la tolerancia al riesgo: Cuando existan opciones de inversión de rentabilidad positiva, los inversores racionales elegirán la inversión en la LMS que se cruza con el eje X; es decir, dinero en efectivo/oro u otra opción de inversión de rentabilidad 0%/positiva que sustituirá a un valor del gobierno de EE.UU. de rentabilidad negativa, o a un depósito bancario de rentabilidad negativa, como inversión "libre de riesgo".

  • Por lo tanto, Rf en el modelo CAPM cambia al 0%, y en un mundo racional, nunca estará por debajo del 0% mientras existan opciones de inversión no negativas.

  • Consecuencias muy negativas para el sector bancario, ya que los depósitos se retiran y se mantienen en billetes de banco o en inversiones de rendimiento positivo... un precursor de las corridas bancarias y, o de las burbujas de precios en las clases de activos de mayor riesgo, incluidos los mercados no estadounidenses.

  • Los inversores irracionales pueden optar por aceptar rendimientos de inversión negativos, pero están muy incentivados a gastar en lugar de ahorrar... alimentando significativamente la inflación general de los precios.

0voto

Akash Puntos 8

Suceden tres cosas:

1- el punto sin riesgo en el origen puede hundirse y permanecer negativo.

2- esto debería hacer que la LMS se empine, es decir, que el rendimiento marginal por unidad de riesgo aumente (suponiendo que no haya cambios en la frontera eficiente). En última instancia, MaxSharpe hará descender la frontera eficiente hacia el punto MinVol. En última instancia, el objetivo de la política monetaria flexible es aumentar la rentabilidad del riesgo.

3- esto empuja toda la frontera eficiente hacia abajo (tipos más bajos -> rendimientos más bajos, cuyo impacto está abierto a debate). Cuanto mayor sea el sesgo a la baja, mayor será el desplazamiento a la derecha (es decir, mayor vol). Esto, a su vez, podría aplanar un poco toda la frontera eficiente.


(1) la opción de "no invertir" que sugiere que el riesgo libre no puede realmente ser negativo no es una opción. Por dos razones:

(1a) hay un arbitraje teórico que se puede obtener poniendo los billetes en una bóveda, suponiendo que dicha bóveda fuera perfectamente segura y más barata de mantener segura que la carga de los intereses de su efectivo. Excepto que lo pruebe. Tomo los ahorros de mi vida en papel y los atesoro. ¿Cómo puedo entonces comprar un coche o una casa con esas bellezas de 100 dólares/CHF1.000? Las campanas de alarma saltarán, más rápido de lo que puedo decir "Oficial Anti Blanqueo de Dinero". Los costes que los traficantes de drogas y los funcionarios corruptos soportan habitualmente al convertir los billetes en depósitos bancarios son una prueba más que suficiente de que el arb no existe realmente.

(1b) incluso si pudieras manejar el truco de la "no inversión", otra persona en algún lugar tendrá que hacerlo en tu ausencia. Lo que hayas comprado para deshacerte de ese dinero, se convierte en su dinero. Y así sucesivamente. El dinero en efectivo puede moverse por el sistema bancario, pero estará en la cuenta de alguien al final de cada día; igualado por una reserva bancaria en el banco central. El dinero no desaparece sin más (a menos que el banco central decida recuperarlo).

Así que al final de cada día, alguien está mirando una opción figurada de efectivo contra valores, con una tasa negativa en el efectivo. Si consiguen esquivar esa opción invirtiendo en valores, siguen tomando esa decisión al quedarse en los valores, porque saben cuál sería el coste de oportunidad de volver a invertir en efectivo. Y si (un gran "si") consiguieran "no invertir", simplemente forzarían el dilema en alguien más que debe hacerlo. Al sistema le da igual que seas tú o él quien tome las decisiones.

(2) Si se toma el perfil clásico de anzuelo de una frontera eficiente de libro, los tipos de interés no cambian esta curva. Sólo desplazan el punto de referencia vertical -el rendimiento para vol. cero- en el eje Y. Esto simplemente empina/plana la pendiente de la LMS a la cartera de tangencia. Lo que, a su vez, mueve la cartera de tangencia hacia arriba o hacia abajo en la frontera.

Así que imagina que los tipos de interés del efectivo son iguales al activo de mayor rendimiento de tu cartera. La LMS es plana, y su cartera de tangencia está limitada por Argentina.

Si se recortan los tipos, la cartera de tangencia desciende por la frontera eficiente hasta que, en algún momento, alcanza (y se mantiene) la cartera de varianza mínima (es decir, el punto más a la izquierda de la EF). En este punto, la LMS será tan pronunciada que los inversores reciben tanto dinero para tolerar la volatilidad, que será más racional apalancarse en la MinVol que asignar activos a cualquier otra combinación de activos. El efectivo es simplemente tan caro en relación con los "Activos", que tomar prestado el efectivo para comprar más Activos es una opción superior a la de diferenciar entre diferentes tipos de Activos.

Tenga en cuenta que este proceso se aplica a cualquier cambio en los tipos de interés, positivo o negativo. La diferencia entre el +0,1% y el -0,1% no tiene nada de especial.

(3) Excepto, por supuesto, que no se puede mantener constante la frontera eficiente así en la realidad. Es complicado; y los distintos asignadores de activos tienen opiniones muy diferentes sobre el impacto de los tipos de interés en los rendimientos de los activos, incluso en las volatilidades, tal vez incluso en las correlaciones entre activos.

Lo único que hay que decir es que:

  • La gente tiende a discutir sobre cuánto arrastran los tipos más bajos al FA en simpatía con los menores rendimientos del efectivo. Algunos dicen que mucho. La mayoría dice que un poco. Unos pocos (sobre todo por razones ideológicas) dicen que no hay impacto. Nadie dice que sea al alza. La tendencia es a la baja.

  • si uno piensa que los tipos tienen un mayor impacto en los rendimientos, entonces unos tipos más bajos pueden tener un efecto amplificador de la volatilidad que empuje el EF hacia la derecha. Aunque esto depende de la caída de la curva. En sus términos más sencillos, consideremos un bono perpetuo con un rendimiento corriente del Y%. Su precio será 1/Y. Lo que significa que su derivada, es decir, el cambio en el precio por el cambio en el rendimiento, es -1/Y^2. Es decir, si se reducen los tipos de interés a la mitad, los precios (para la duración perpetua) fluctuarán cuatro veces más rápido. Obviamente, menos para la duración sub-infinita y los activos con riesgo-premia incorporado, etc. Pero espero que entiendas el argumento básico.

  • si se produce el efecto de la volatilidad, esto podría a su vez aplanar la propia frontera eficiente. Muchos economistas se ponen a escupir sobre esto; y el argumento es más común entre los que se dedican a la gestión del riesgo.

Consideremos una construcción de mercado muy simple, clásica e hipotética. Tenemos un bono del Estado a largo plazo, con un riesgo de duración como el anterior. Y tenemos acciones que incorporan una prima de riesgo de renta variable además del rendimiento de este bono. Supongamos, para simplificar, que la prima de riesgo de acciones fluctúa independientemente de los tipos de interés y del rendimiento de los bonos. Es específica de la renta variable. Tipos más bajos -> rendimientos más bajos -> mayor convexidad -> mayores volatilidades de los bonos aumentarán las correlaciones entre las acciones. Como la varianza del BY está al alza y la varianza del ERP no, la primera representa más de la mezcla de varianza de la renta variable agregada. Las acciones "se parecen más" a los bonos. Las correlaciones más altas aplanan la frontera eficiente.

Hay mucho "debate" sobre estos efectos. Así que no se pueden dar por sentados, y mucho menos con una regla empírica dura en cuanto a la magnitud de los efectos. Pero podemos decir que nadie discute que los rendimientos sean más altos, los vols más bajos y las fronteras más curvas. El debate gira en torno a si se dan los dos extremos y en qué medida.

Espero que esto ayude.

Finanhelp.com

FinanHelp es una comunidad para personas con conocimientos de economía y finanzas, o quiere aprender. Puedes hacer tus propias preguntas o resolver las de los demás.

Powered by:

X